3.297 \(\int \frac{1}{x^4 (a+b x^2)^2 (c+d x^2)} \, dx\)

Optimal. Leaf size=189 \[ \frac{-2 a^2 d^2-2 a b c d+5 b^2 c^2}{2 a^3 c^2 x (b c-a d)}+\frac{b^{5/2} (5 b c-7 a d) \tan ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )}{2 a^{7/2} (b c-a d)^2}-\frac{5 b c-2 a d}{6 a^2 c x^3 (b c-a d)}+\frac{d^{7/2} \tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )}{c^{5/2} (b c-a d)^2}+\frac{b}{2 a x^3 \left (a+b x^2\right ) (b c-a d)} \]

[Out]

-(5*b*c - 2*a*d)/(6*a^2*c*(b*c - a*d)*x^3) + (5*b^2*c^2 - 2*a*b*c*d - 2*a^2*d^2)/(2*a^3*c^2*(b*c - a*d)*x) + b
/(2*a*(b*c - a*d)*x^3*(a + b*x^2)) + (b^(5/2)*(5*b*c - 7*a*d)*ArcTan[(Sqrt[b]*x)/Sqrt[a]])/(2*a^(7/2)*(b*c - a
*d)^2) + (d^(7/2)*ArcTan[(Sqrt[d]*x)/Sqrt[c]])/(c^(5/2)*(b*c - a*d)^2)

________________________________________________________________________________________

Rubi [A]  time = 0.277482, antiderivative size = 189, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {472, 583, 522, 205} \[ \frac{-2 a^2 d^2-2 a b c d+5 b^2 c^2}{2 a^3 c^2 x (b c-a d)}+\frac{b^{5/2} (5 b c-7 a d) \tan ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )}{2 a^{7/2} (b c-a d)^2}-\frac{5 b c-2 a d}{6 a^2 c x^3 (b c-a d)}+\frac{d^{7/2} \tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )}{c^{5/2} (b c-a d)^2}+\frac{b}{2 a x^3 \left (a+b x^2\right ) (b c-a d)} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^4*(a + b*x^2)^2*(c + d*x^2)),x]

[Out]

-(5*b*c - 2*a*d)/(6*a^2*c*(b*c - a*d)*x^3) + (5*b^2*c^2 - 2*a*b*c*d - 2*a^2*d^2)/(2*a^3*c^2*(b*c - a*d)*x) + b
/(2*a*(b*c - a*d)*x^3*(a + b*x^2)) + (b^(5/2)*(5*b*c - 7*a*d)*ArcTan[(Sqrt[b]*x)/Sqrt[a]])/(2*a^(7/2)*(b*c - a
*d)^2) + (d^(7/2)*ArcTan[(Sqrt[d]*x)/Sqrt[c]])/(c^(5/2)*(b*c - a*d)^2)

Rule 472

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(b*(e*x
)^(m + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*e*n*(b*c - a*d)*(p + 1)), x] + Dist[1/(a*n*(b*c - a*d)*(
p + 1)), Int[(e*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*b*(m + 1) + n*(b*c - a*d)*(p + 1) + d*b*(m + n*(
p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p
, -1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 583

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[(e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*c*g*(m + 1)), x] + Dist[1/(a*c*
g^n*(m + 1)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) - e*(b*c + a*d)*(m + n + 1) - e
*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] &&
 IGtQ[n, 0] && LtQ[m, -1]

Rule 522

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{x^4 \left (a+b x^2\right )^2 \left (c+d x^2\right )} \, dx &=\frac{b}{2 a (b c-a d) x^3 \left (a+b x^2\right )}-\frac{\int \frac{-5 b c+2 a d-5 b d x^2}{x^4 \left (a+b x^2\right ) \left (c+d x^2\right )} \, dx}{2 a (b c-a d)}\\ &=-\frac{5 b c-2 a d}{6 a^2 c (b c-a d) x^3}+\frac{b}{2 a (b c-a d) x^3 \left (a+b x^2\right )}+\frac{\int \frac{-3 \left (5 b^2 c^2-2 a b c d-2 a^2 d^2\right )-3 b d (5 b c-2 a d) x^2}{x^2 \left (a+b x^2\right ) \left (c+d x^2\right )} \, dx}{6 a^2 c (b c-a d)}\\ &=-\frac{5 b c-2 a d}{6 a^2 c (b c-a d) x^3}+\frac{5 b^2 c^2-2 a b c d-2 a^2 d^2}{2 a^3 c^2 (b c-a d) x}+\frac{b}{2 a (b c-a d) x^3 \left (a+b x^2\right )}-\frac{\int \frac{-3 \left (5 b^3 c^3-2 a b^2 c^2 d-2 a^2 b c d^2-2 a^3 d^3\right )-3 b d \left (5 b^2 c^2-2 a b c d-2 a^2 d^2\right ) x^2}{\left (a+b x^2\right ) \left (c+d x^2\right )} \, dx}{6 a^3 c^2 (b c-a d)}\\ &=-\frac{5 b c-2 a d}{6 a^2 c (b c-a d) x^3}+\frac{5 b^2 c^2-2 a b c d-2 a^2 d^2}{2 a^3 c^2 (b c-a d) x}+\frac{b}{2 a (b c-a d) x^3 \left (a+b x^2\right )}+\frac{d^4 \int \frac{1}{c+d x^2} \, dx}{c^2 (b c-a d)^2}+\frac{\left (b^3 (5 b c-7 a d)\right ) \int \frac{1}{a+b x^2} \, dx}{2 a^3 (b c-a d)^2}\\ &=-\frac{5 b c-2 a d}{6 a^2 c (b c-a d) x^3}+\frac{5 b^2 c^2-2 a b c d-2 a^2 d^2}{2 a^3 c^2 (b c-a d) x}+\frac{b}{2 a (b c-a d) x^3 \left (a+b x^2\right )}+\frac{b^{5/2} (5 b c-7 a d) \tan ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )}{2 a^{7/2} (b c-a d)^2}+\frac{d^{7/2} \tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )}{c^{5/2} (b c-a d)^2}\\ \end{align*}

Mathematica [A]  time = 0.270661, size = 142, normalized size = 0.75 \[ -\frac{b^3 x}{2 a^3 \left (a+b x^2\right ) (a d-b c)}-\frac{b^{5/2} (7 a d-5 b c) \tan ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )}{2 a^{7/2} (a d-b c)^2}+\frac{a d+2 b c}{a^3 c^2 x}-\frac{1}{3 a^2 c x^3}+\frac{d^{7/2} \tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )}{c^{5/2} (b c-a d)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^4*(a + b*x^2)^2*(c + d*x^2)),x]

[Out]

-1/(3*a^2*c*x^3) + (2*b*c + a*d)/(a^3*c^2*x) - (b^3*x)/(2*a^3*(-(b*c) + a*d)*(a + b*x^2)) - (b^(5/2)*(-5*b*c +
 7*a*d)*ArcTan[(Sqrt[b]*x)/Sqrt[a]])/(2*a^(7/2)*(-(b*c) + a*d)^2) + (d^(7/2)*ArcTan[(Sqrt[d]*x)/Sqrt[c]])/(c^(
5/2)*(b*c - a*d)^2)

________________________________________________________________________________________

Maple [A]  time = 0.015, size = 191, normalized size = 1. \begin{align*}{\frac{{d}^{4}}{{c}^{2} \left ( ad-bc \right ) ^{2}}\arctan \left ({dx{\frac{1}{\sqrt{cd}}}} \right ){\frac{1}{\sqrt{cd}}}}-{\frac{1}{3\,{a}^{2}c{x}^{3}}}+{\frac{d}{{a}^{2}{c}^{2}x}}+2\,{\frac{b}{{a}^{3}cx}}-{\frac{{b}^{3}xd}{2\,{a}^{2} \left ( ad-bc \right ) ^{2} \left ( b{x}^{2}+a \right ) }}+{\frac{{b}^{4}xc}{2\,{a}^{3} \left ( ad-bc \right ) ^{2} \left ( b{x}^{2}+a \right ) }}-{\frac{7\,{b}^{3}d}{2\,{a}^{2} \left ( ad-bc \right ) ^{2}}\arctan \left ({bx{\frac{1}{\sqrt{ab}}}} \right ){\frac{1}{\sqrt{ab}}}}+{\frac{5\,{b}^{4}c}{2\,{a}^{3} \left ( ad-bc \right ) ^{2}}\arctan \left ({bx{\frac{1}{\sqrt{ab}}}} \right ){\frac{1}{\sqrt{ab}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^4/(b*x^2+a)^2/(d*x^2+c),x)

[Out]

1/c^2*d^4/(a*d-b*c)^2/(c*d)^(1/2)*arctan(x*d/(c*d)^(1/2))-1/3/a^2/c/x^3+1/a^2/c^2/x*d+2/a^3/c/x*b-1/2*b^3/a^2/
(a*d-b*c)^2*x/(b*x^2+a)*d+1/2*b^4/a^3/(a*d-b*c)^2*x/(b*x^2+a)*c-7/2*b^3/a^2/(a*d-b*c)^2/(a*b)^(1/2)*arctan(b*x
/(a*b)^(1/2))*d+5/2*b^4/a^3/(a*d-b*c)^2/(a*b)^(1/2)*arctan(b*x/(a*b)^(1/2))*c

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(b*x^2+a)^2/(d*x^2+c),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 7.85329, size = 2558, normalized size = 13.53 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(b*x^2+a)^2/(d*x^2+c),x, algorithm="fricas")

[Out]

[-1/12*(4*a^2*b^2*c^3 - 8*a^3*b*c^2*d + 4*a^4*c*d^2 - 6*(5*b^4*c^3 - 7*a*b^3*c^2*d + 2*a^3*b*d^3)*x^4 - 4*(5*a
*b^3*c^3 - 7*a^2*b^2*c^2*d - a^3*b*c*d^2 + 3*a^4*d^3)*x^2 + 3*((5*b^4*c^3 - 7*a*b^3*c^2*d)*x^5 + (5*a*b^3*c^3
- 7*a^2*b^2*c^2*d)*x^3)*sqrt(-b/a)*log((b*x^2 - 2*a*x*sqrt(-b/a) - a)/(b*x^2 + a)) - 6*(a^3*b*d^3*x^5 + a^4*d^
3*x^3)*sqrt(-d/c)*log((d*x^2 + 2*c*x*sqrt(-d/c) - c)/(d*x^2 + c)))/((a^3*b^3*c^4 - 2*a^4*b^2*c^3*d + a^5*b*c^2
*d^2)*x^5 + (a^4*b^2*c^4 - 2*a^5*b*c^3*d + a^6*c^2*d^2)*x^3), -1/12*(4*a^2*b^2*c^3 - 8*a^3*b*c^2*d + 4*a^4*c*d
^2 - 6*(5*b^4*c^3 - 7*a*b^3*c^2*d + 2*a^3*b*d^3)*x^4 - 4*(5*a*b^3*c^3 - 7*a^2*b^2*c^2*d - a^3*b*c*d^2 + 3*a^4*
d^3)*x^2 - 12*(a^3*b*d^3*x^5 + a^4*d^3*x^3)*sqrt(d/c)*arctan(x*sqrt(d/c)) + 3*((5*b^4*c^3 - 7*a*b^3*c^2*d)*x^5
 + (5*a*b^3*c^3 - 7*a^2*b^2*c^2*d)*x^3)*sqrt(-b/a)*log((b*x^2 - 2*a*x*sqrt(-b/a) - a)/(b*x^2 + a)))/((a^3*b^3*
c^4 - 2*a^4*b^2*c^3*d + a^5*b*c^2*d^2)*x^5 + (a^4*b^2*c^4 - 2*a^5*b*c^3*d + a^6*c^2*d^2)*x^3), -1/6*(2*a^2*b^2
*c^3 - 4*a^3*b*c^2*d + 2*a^4*c*d^2 - 3*(5*b^4*c^3 - 7*a*b^3*c^2*d + 2*a^3*b*d^3)*x^4 - 2*(5*a*b^3*c^3 - 7*a^2*
b^2*c^2*d - a^3*b*c*d^2 + 3*a^4*d^3)*x^2 - 3*((5*b^4*c^3 - 7*a*b^3*c^2*d)*x^5 + (5*a*b^3*c^3 - 7*a^2*b^2*c^2*d
)*x^3)*sqrt(b/a)*arctan(x*sqrt(b/a)) - 3*(a^3*b*d^3*x^5 + a^4*d^3*x^3)*sqrt(-d/c)*log((d*x^2 + 2*c*x*sqrt(-d/c
) - c)/(d*x^2 + c)))/((a^3*b^3*c^4 - 2*a^4*b^2*c^3*d + a^5*b*c^2*d^2)*x^5 + (a^4*b^2*c^4 - 2*a^5*b*c^3*d + a^6
*c^2*d^2)*x^3), -1/6*(2*a^2*b^2*c^3 - 4*a^3*b*c^2*d + 2*a^4*c*d^2 - 3*(5*b^4*c^3 - 7*a*b^3*c^2*d + 2*a^3*b*d^3
)*x^4 - 2*(5*a*b^3*c^3 - 7*a^2*b^2*c^2*d - a^3*b*c*d^2 + 3*a^4*d^3)*x^2 - 3*((5*b^4*c^3 - 7*a*b^3*c^2*d)*x^5 +
 (5*a*b^3*c^3 - 7*a^2*b^2*c^2*d)*x^3)*sqrt(b/a)*arctan(x*sqrt(b/a)) - 6*(a^3*b*d^3*x^5 + a^4*d^3*x^3)*sqrt(d/c
)*arctan(x*sqrt(d/c)))/((a^3*b^3*c^4 - 2*a^4*b^2*c^3*d + a^5*b*c^2*d^2)*x^5 + (a^4*b^2*c^4 - 2*a^5*b*c^3*d + a
^6*c^2*d^2)*x^3)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**4/(b*x**2+a)**2/(d*x**2+c),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.16141, size = 223, normalized size = 1.18 \begin{align*} \frac{d^{4} \arctan \left (\frac{d x}{\sqrt{c d}}\right )}{{\left (b^{2} c^{4} - 2 \, a b c^{3} d + a^{2} c^{2} d^{2}\right )} \sqrt{c d}} + \frac{b^{3} x}{2 \,{\left (a^{3} b c - a^{4} d\right )}{\left (b x^{2} + a\right )}} + \frac{{\left (5 \, b^{4} c - 7 \, a b^{3} d\right )} \arctan \left (\frac{b x}{\sqrt{a b}}\right )}{2 \,{\left (a^{3} b^{2} c^{2} - 2 \, a^{4} b c d + a^{5} d^{2}\right )} \sqrt{a b}} + \frac{6 \, b c x^{2} + 3 \, a d x^{2} - a c}{3 \, a^{3} c^{2} x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(b*x^2+a)^2/(d*x^2+c),x, algorithm="giac")

[Out]

d^4*arctan(d*x/sqrt(c*d))/((b^2*c^4 - 2*a*b*c^3*d + a^2*c^2*d^2)*sqrt(c*d)) + 1/2*b^3*x/((a^3*b*c - a^4*d)*(b*
x^2 + a)) + 1/2*(5*b^4*c - 7*a*b^3*d)*arctan(b*x/sqrt(a*b))/((a^3*b^2*c^2 - 2*a^4*b*c*d + a^5*d^2)*sqrt(a*b))
+ 1/3*(6*b*c*x^2 + 3*a*d*x^2 - a*c)/(a^3*c^2*x^3)